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Black holes, star clusters, and naked singularities:
numerical solution of Einstein’s equations

By STuART L. SHAPIRO AND SAUL A. TEUKOLSKY

Center for Radiophysics and Space Research, and Departments of Astronomy and
Physics, Cornell University, Ithaca, New York, 14853, U.S.A.
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We describe a new method for the numerical solution of Einstein’s equations for the
dynamical evolution of a collisionless gas of particles in general relativity. The
gravitational field can be arbitrarily strong and particle velocities can approach the
speed of light. The computational method uses the tools of numerical relativity and
N-body particle simulation to follow the full nonlinear behaviour of these systems.
Specifically, we solve the Vlasov equation in general relativity by particle simulation.
The gravitational field is integrated by using the 3+ 1 formalism of Arnowitt, Deser
and Misner.

Physical applications include the stability of relativistic star clusters the binding
energy criterion for stability, and the collapse of star clusters to black holes.
Astrophysical issues addressed include the possible origin of quasars and active
galactic nuclei via the collapse of dense star clusters to supermassive black holes.

The method described here also provides a new tool for studying the cosmic
censorship hypothesis and the possibility of naked singularities. The formation of a
naked singularity during the collapse of a finite object would pose a serious difficulty
for the theory of general relativity. The hoop conjecture suggests that this possibility
will never happen provided the object is sufficiently compact (< M) in all of its
spatial dimensions. But what about the collapse of a long, non-rotating, prolate
object to a thin spindle? Such collapse leads to a strong singularity in newtonian
gravitation. Using our numerical code to evolve collisionless gas spheroids in full
general relativity, we find that in all cases the spheroids collapse to singularities.
When the spheroids are sufficiently compact the singularities are hidden inside black
holes. However, when the spheroids are sufficiently large there are no apparent
horizons. These results lend support to the hoop conjecture and appear to
demonstrate that naked singularities can form in asymptotically flat space-times.
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1. Introduction

Gravitational physics, like many other branches of nonlinear physics, has made
significant advances with the advent of computers. Two areas of gravity research in
particular have been the subject of intensive computational efforts in recent years.
One area, loosely called ‘N-body physics’, is a variation of the classical N-body
problem. Stripped to its bare essentials, this problem requires that a large number
N of self-gravitating, but otherwise non-interacting, point particle masses be evolved
numerically in time, starting from some given set of initial particle positions and
velocities. The governing dynamical equation is Newton’s law of motion in a many-
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body, newtonian (Coulomb) gravitational field. The other area of intensive research
is ‘numerical relativity’, a considerably younger pursuit. It concentrates on
integrating forward in time on the computer the coupled Einstein equations of
general relativity for the gravitational metric field and matter distribution, again
starting from some well-posed initial data. Until recently, the matter distributions
of interest have all been those of a fluid gas (and, typically, a perfect fluid) and are
therefore controlled by the equations of relativistic hydrodynamics.

This paper is a review of our effort to link the two, heretofore distinct,
computational endeavours described above. Specifically, we summarize highlights of
numerical solutions of the Einstein equations for the dynamical evolution of a
collisionless gas in general relativity. Our focus is on dynamical scenarios involving
strong gravitational fields and high particle velocities approaching the speed of light.
We thereby extend previous work on the N-body problem to the fully relativistic
domain. We also extend previous work in numerical relativity to the régime of
collisionless matter.

The analysis we present may casually be referred to as ‘relativistic stellar
dynamics on the computer’. Indeed, many of the key applications of our calculations
address outstanding issues concerning the dynamical behaviour of relativistic star
clusters. However, our results have far wider applicability, in that the matter fields
need not be identified with stars per se but with any gas of collisionless, self-
gravitating particles. It is more appropriate, then, to regard our computations very
generally as numerical solutions of the collisionless Boltzmann (or Vlasov) equations
for dynamical systems in general relativity.

The motivation for tackling this problem is at least threefold: computational,
theoretical, and astrophysical. The primary computational goal is to learn how to
solve Einstein’s equations for interesting dynamical problems involving strong
gravitational fields. Working with collisionless matter has several advantages over
fluid systems for doing numerical relativity. The collisionless matter equations are
ordinary differential equations (the geodesic equations), while hydrodynamical
equations are partial differential equations. Furthermore, collisionless matter is not
subject to shocks or other hydrodynamical discontinuities. These pathologies require
special care in numerical simulations. Their absence allows one to focus all of the
computational effort on solving Einstein’s field equations. Consequently, the
collisionless matter environment provides a golden opportunity to experiment with
different numerical algorithms, coordinate choices, and so on. It is the Camelot for
searching for the Holy Grail of numerical relativity —a code that simultaneously
avoids singularities, handles black holes, maintains high accuracy, and runs forever.

Turning to the theoretical motivation, this work address several longstanding
issues in relativistic stellar dynamics. Thus, for example, there exist as yet only
sufficient, but not necessary, criteria for the radial stability of a spherical relativistic
star cluster (Ipser 1980). Moreover, the nonlinear evolution and final fate of an
unstable cluster had never been demonstrated before our study, although it had been
conjectured (cf. Zel’dovich & Podurets 1965; Fackerell et al. 1969) that it was likely
to be catastrophic collapse to a black hole. Previous work, based on perturbation
theory (see §2), had been unable to resolve the stability issue completely and unable
to address the issue of the fate at all. Fully nonlinear, time-dependent calculations
were required to settle these important questions.

Because Einstein’s equations are so difficult to solve analytically, numerical
relativity is an important tool in resolving many fundamental issues that arise in the
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theory. One such issue is the possibility that naked singularities might form from the
collapse of well-behaved initial data. This would be a violation of Penrose’s cosmic
censorship hypothesis (Penrose 1969). Settling this question has defied analytic
investigation for over 20 years. Hawking has called the issue ‘the most important
unsolved problem in classical general relativity’. As described below, recent
collisionless matter simulations suggest that some limitations might be required to
the unqualified cosmic censorship hypothesis.

Astrophysically, our study of the dynamical evolution of collisionless systems in
general relativity has many potential applications in stellar dynamics, cosmology,
and gravitational wave astronomy and some important associated observational
consequences. It is amusing to recall that in the late 1960s and early 1970s,
relativistic stellar dynamics was pursued in large measure to find gravitationally
bound, high-redshift, stable systems to explain the high redshifts observed in
quasars. Obviously, this particular pursuit is no longer very relevant today.
However, explaining quasars and active galactic nuclei (aaNs) is still a burning issue.
Lately it has become increasingly evident that quasars, AeNs, and other intense
extragalactic radio sources are powered by jets of gas and magnetic fields and that
each jet is produced by a compact supermassive object (M 2 10" M) in the nucleus
of a galaxy (cf. Begelman et al. 1984). A supermassive black hole is the likely
candidate for the compact object. But the puzzle remains: how and under what
circumstances did these supermassive black holes form ? Our numerical study of the
collapse of relativistic stellar systems to supermassive black holes may provide some
clues to this puzzle.

Non-spherical simulations of collisionless matter can address other important
astrophysical topics, such as the generation of gravitational waves, and the collision
of relativistic clusters and black holes. These phenomena will have to be understood
if theorists are ever to decipher waveforms from the laser interferomer gravitational
wave observatory now under construction.

If these are not reasons enough for studying relativistic stellar dynamics, we can
always appeal to Authority:

... the collapse of a system of particles is very complicated. The problem is more
difficult than the nonstationary hydrodynamical problem ... It is very desirable
to perform calculations for such a model.

(Zel’dovich & Podurets 1965)

2. Relativistic star clusters: historical perspective

The field of relativistic stellar dynamics was effectively launched by Einstein
(1939), who constructed static, spherically symmetric, collisionless clusters of
gravitating particles to investigate the physical significance of the Schwarzschild
singularity. Einstein assumed that the particles all moved in circular orbits. He
showed that 2GM /RC?, where M is the total mass-energy and R is the areal radius of
a cluster, could never reach unity for such a system, so that the Schwarzschild
singularity could never be realized.

(Einstein (1939) went on to infer that ‘*“Schwarzschild singularities”” do not exist
in physical reality....The “Schwarzschild singularity” does not appear for the
reason that matter cannot be concentrated arbitrarily.’ Although true for static,
non-singular, equilibrium configurations, Einstein’s statement is of course not true

Phil. Trans. R. Soc. Lond. A (1992)
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for dynamic space-times, which can give rise to black holes and space-time
singularities. See below for numerical demonstrations.)

Some years earlier, actually, Synge (1934) and Walker (1936) had laid the formal
groundwork for more general discussions of collisionless distributions in relativity,
while Walker derived the collisionless Boltzmann equation satisfied by the
distribution function (see Fackerell (1968) for a slightly expanded summary of this
early work).

For the most part, however, a casual perusal of the literature suggests that the
field of relativistic stellar dynamics could have been named more aptly the study of
relativistic stellar statics. That is, beginning with the spherical, circular orbit models
of Einstein’s (1939) (see also Zapolsky 1968), and extending through the more
realistic, spherical, isotropic models of Zel’dovich & Podurets (1965), Fackerell (1968,
1970), Fackerell et al. (1969), Ipser & Thorne (1968), Ipser (1969a, b, 1980), Katz &
Horwitz (1974), and Suffern & Fackerell (1976), previous work has focused on the
construction of static solutions of collisionless systems in general relativity and the
establishment of criteria for their stability (see Zel’dovich & Novikov (1971) Misner
et al. (1973) for many more details and references). As noted in §1, much of this work
was originally motivated by the discovery of quasars and the subsequent attempt to
find intrinsically high redshift, stable, equilibrium systems to explain them. A
number of interesting questions were raised in these studies. Can stable models with
arbitrarily large redshifts be constructed ? What are the perturbation equations for
the radial deformation of spherical, equilibrium systems? Do there exist global
stability criteria for the onset of gravitational collapse along equilibrium sequences of
collisionless configurations, as is the case for fluid stars in general relativity ? And so
on.

A number of these intriguing questions were answered by these original
investigations, which for the most part applied linear perturbation techniques to
numerical models of spherical, equilibrium configurations. For example, following
the suggestions by Zel’dovich & Podurets (1965) that sufficiently compact, high-
redshift objects would be unstable to gravitational collapse, Ipser & Thorne (1968)
formulated the theory of the stability of collisionless, spherical configurations against
radial perturbations in the form of a variational principle. Ipser (1969b) then
successfully reduced this variational principle to a form suitable for analysing, by use
of trial functions, the radial stability of both isothermal and polytropic con-
figurations, provided their equilibrium density distributions were not too centrally
condensed. Fackerell (1970) extended this approach to study very centrally
condensed clusters (‘extreme core-halo configurations’). The upshot of this work was
the numerical discovery that along a sequence of equilibrium configurations
parametrized by z,, the central redshift of the system, the onset of instability
occurred very near the point of maximum fractional binding energy, z, 2 0.5,
independent of the nature of the models. The result was subsequently rigorized by
Ipser (1980), who proved that appropriate one-parameter sequences of spherical,
equilibrium configurations were stable at least up to the first maximum of the
fractional binding energy.

Although appreciable progress was thus achieved in resolving some of the
important issues, many of the key questions remained unsolved. For example, the
inability to prove both a sufficient and necessary binding energy criterion for radial
stability restricted the applicability of the binding energy curve as a stability
diagnostic for collisionless systems. This contrasts with the situation for spherical
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O 48] Figure 1. Schematic representation of the distribution of particles in a spherical star cluster.
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T O fluid configurations (stars) in general relativity, for which the binding energy
maximum rigorously locates the onset of radial instability. (Suffern & Fackerell

=w g y y

(1976) concluded that in the case of a collisionless sequence, ‘The confirmation or
otherwise of this conjecture must await the development of more powerful methods
for studying the dynamic stability of relativistic star clusters.”) More significantly,
the nonlinear evolution and ultimate fate of an unstable collisionless cluster could
only be conjectured in these earlier studies.

Perhaps the most interesting and important concept to emerge from this previous
work was the speculation, originally due to Zel’dovich & Podurets (1965), that
unstable clusters inevitably undergo catastrophic collapse to a black hole (see also
Fackerell et al. (1969) Zel’dovich & Novikov (1971) and Misner et al. (1973), who all
subsequently endorsed this conjecture). Their qualitative scenario was recounted by
Zel’dovich & Novikov (1971), who wrote,
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The physical picture of the collapse in this case is an increase of the core mass,
accompanied by a transformation of formerly stable orbits into inward spirals,
which lead the core and accompanying stars into their collective gravitational
radius ... A numerical investigation of such collapse is badly needed, but no one
up to now has had the fortitude to attempt it.

Part of the purpose of our study has been to muster the fortitude to examine many
of the unresolved issues in relativistic stellar dynamics mentioned above.

—

§ >= 3. Physical picture

8 : Consider the situation in the simplest case, spherical symmetry. Imagine a sphere
— drawn in the interior of the collisionless matter distribution (figure 1).

O The sphere is densely and uniformly covered with an infinite number of particles,

E 8 each with infinitesimal rest mass. At any point on the sphere particles move in both

the radial and transverse directions. To preserve spherical symmetry, we require that
their motion be isotropic in the transverse plane. Thus, while individual particles
may have finite angular momentum about the cluster centre, the total angular
momentum summed over all the particles is zero.

The restriction to spherical symmetry reduces the number of phase space degrees

Phil. Trans. R. Soc. Lond. A (1992)

15-2

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

e

A
\

\\ \\
2

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
g \

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

370 S. L. Shapiro and S. A. Teukolsky

of freedom we have to keep track of. In coordinate space the only non-trivial
dynamical variable is the radius r of a particle. In velocity space the non-trivial
dynamical variables are the radial and transverse velocities, u” and u*

When we later generalize to axisymmetry, there are two non- thlal dynamlcal
variables in coordinate space, » and 6, and three in velocity space, u’, u’, and u?.

4, Newtonian limit

Before considering the fully relativistic problem, it is instructive to examine how
the spherical problem is solved in newtonian physics. For the motion of non-
relativistic particles, the metric is just

ds? = —(1420) df* +dr?+72dQ2, (4.1)

where @ is the newtonian potential. The matter moves according to the geodesic
equations, which are simply Newton’s Laws of Motion:

dx/dt =u, du/dt= —V, 4.2)

where x and u are the position and velocity 3-vectors of each particle. Because of
spherical symmetry, these equations simplify to

dr/dt = u,,

du,/dt = — D, +u?/r3,
/ o/ (4.3)
ug =0 (orbit confined to the plane 6 = in),

duy/dt =0 (conservation of angular momentum).

These equations are integrated for every particle for a small timestep. The new
particle positions then yield the rest-mass density p at the new time:
p= X mn, (4.4)

all particles

where m is the particle rest mass and » the number density. The rest-mass density
serves as the source term for the gravitational field equation, which in this case is

simply Poisson’s equation V20 = dnGp. (4.5)

Solving this equation gives the self-consistent gravitational field at the new time. The
new potential is then inserted in the particle equations of motion and the process is
repeated. This approach to evolving a self-gravitating, N-body system is known as
a mean-field, particle simulation scheme.

5. Relativistic equations in spherical symmetry

Solving the relativistic problem in spherical symmetry is similar in spirit to the
newtonian approach just described. A complete account is given in the series of
papers by Shapiro & Teukolsky (1985a—c, 1986, hereafter Papers I-IV). A semi-
popular treatment is given in Shapiro & Teukolsky (1988). The matter is evolved by
N-body particle simulation and provides the source for the mean gravitational field,
or metric. The metric is then determined by solving the apm(3+1) equations

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

\
A
[\
N

a
//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Numerical solution of Einstein’s equations 371

(Arnowitt et al. 1962). ApM cast the Kinstein equations into a form suitable for
evolving space-times into the future from well-posed initial data specified on a
spacelike hypersurface. In this formulation of general relativity, four-dimensional
space-time is split into (3+ 1)-dimensional space+ time. This decomposition yields
(1) ‘constraint’ or ‘initial value’ equations, which contain no time derivatives and
relate field quantities (i.e. metric coefficients) on spacelike hypersurfaces; and (2)
‘evolution’ equations, which contain all the time derivatives and enable one to
evolve field quantities from one time slice (i.e. spacelike hypersurface) to the next.
(For an overview of the Apm formalism, see Misner ef al. (1973) and Wald (1984).)
We adopt the isotropic form of the metric:

ds? = —(a?—A%4%) di? + 2428 dr di+ A%(dr2 4+ r2 62 + r2sin? 6 dg?). (5.1)
Here a and g are the lapse and shift functions of Apm. We use units with ¢ = ¢ = 1.

(@) Matter equations

The matter is described by the stress—energy tensor for a collisionless gas of

particles, Tw = Sym, n, wh . (5.2)
A

Here m,, is the rest mass of particles of type A, w* is their 4-velocity, and n, is their

co-moving number density.
The equation of motion (V- T = 0) for each particle is the geodesic equation

whu’ = 0. (5.3)
Once again these equations simplify in spherical symmetry, yielding

dr/dt = ou,/A%(au’)— B,

duv, _ (au®) ot ,4u, B+ a A, | oy ( L + A ),
d¢ ' T (ou®) A3 (au®)\rP A% 2 A3 (5.4)
uy = 0,
duy/dt = 0.
The normalization of the 4-velocity,
w,w' = —1, (5.5)
gives au® = (1+u2/A>+ud/r? A%, (5.6)

Thus, given the metric at any time ¢, equations (5.4) and (5.6) are integrated for the
new positions and 4-velocities of the particles at ¢4 At.

In the newtonian limit, 4 -1, a>1,« ,—>® ,, -0, and u,~ 1. We thus recover
the newtonian equations of motion discussed in the previous section.

(b) Source terms

Given the particle positions and velocities, one can calculate the source terms
needed in the field equations:

p= Z,'nA nA(augt)z’ tr = _EmA nA(augl)ur(A)’
A A

56.7)
T= XMy ny, Srr =2Xmy N 4Ur(a) Urcay:
A A
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(¢) Field equations
One of the challenges of numerical relativity is to find a good choice of coordinates
so that one can actually solve the problem posed without encountering singularities.
We have explored two choices of time coordinate. The first is the time coordinate
defined by the maximal slicing condition. Mathematically, maximal slicing is defined
by setting the trace of the extrinsic curvature of the ¢ = const. slices to zero:

TrK, = Ki=0. (5.8)

Taking the trace of the evolution equation for 0, K; then leads to an elliptic equation
for the lapse function «, equation (5.15) below.

A different time-slicing condition has been proposed by D. M. Eardley (unpublished
work) and by Bardeen & Piran (1983). This is the polar slicing condition : set the trace
of the transverse part of K;; to zero, that is, the part orthogonal to the radial
direction. This can be written Ky = Kj+K2 =0, (5.9)

The primary motivation for polar slicing was to find a coordinate condition that
would make it easier to compute the amount of gravitational radiation emitted
during non-spherical gravitational collapse. It was also hoped that this condition
might have better singularity avoidance than maximal slicing when a black hole
forms. This hope arises because polar slicing avoids regions of space-time containing
trapped surfaces in spherical symmetry, and trapped surfaces signal the presence of
an event horizon and the impending formation of a singularity. We have used our
code to explore whether these expectations are actually met.

It is convenient to use the quantity K to write equations valid in both maximal
and polar gauges:

0, polar slicing,
= (6.10)

—KI, maximal slicing.
Then the evolution equation for the metric coefficient 4 is
A,=pA ,+A4)r)—30AK,. (5.11)
The hamiltonian constraint becomes

10(,0 L ,
(= Ab) = —14%8mp +2K2). 12
= ay(r ﬁrA) 143(8mp +2K2) (5.12)

The shift g is given by the equation

B= —rr oc(ﬂ—%&)% (5.13)

r

The momentum constraint determines the radial component of the extrinsic
curvature:

—A83n3f A?r*t,dr, maximal,

r

K= \ : (5.14)
nrt,

144 /A7

polar.

Phil. Trans. R. Soc. Lond. A (1992)
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The lapse equation for maximal slicing is

%(A72§a> = ad?r?[3(K.)2 +8np +4nT], (6.15)
while for polar slicing we get
_ Ama.x Xmax 1 V(A,r/A)Z'i'STWSw =
=" exp[zﬁa Y dr|. (5.16)

(d) Boundary conditions

The boundary conditions on the metric variables are discussed in Paper I for
maximal slicing and Paper IV for polar slicing. In brief, we match to asymptotic
flatness at large » and impose regularity at the origin.

(e) Diagnostics
A number of self-consistency checks and diagnostic parameters for spherical
systems are described in Papers I and IV. These include: conservation of the total
mass-energy M ; conservation of particle energy for stable, equilibrium clusters; null
geodesic equations for light rays, used to map out the position of the event horizon ;
the criterion for the presence of trapped surfaces; and probes of the velocity
distribution.

6. a-Freezing

Numerically, the above equations yield very accurate space-times for the most
part. Examples will be shown below. However, as discussed in Paper IV, some of our
integrations of collapsing clusters terminate well before the exterior space-time
surrounding a growing, central black hole reaches a final stationary state. Thus it is
not always possible for us to determine exactly what fraction of the total mass of a
cluster ultimately forms a black hole and what fraction remains outside in orbit
about the central hole. Not surprisingly, this problem is most severe when we evolve
clusters with appreciable central concentration. Such configurations by construction
are characterized by enormous dynamic range, with the dynamical (orbit) timescale
in the central core significantly shorter than the dynamical timescale in the outer
halo. Following the orbits of the central stars near the event horizon accurately on
timescales sufficiently long to track the outer halo stars is crucial for determining the
final fate of the configuration. This requirement imposes the ultimate limitation on
the ability of our code to integrate arbitrarily far into the future.

Overcoming the above limitation is not merely of pedagogic interest. For as we
discussed in Paper I1I (see §10 below), if relativistic star clusters do form in Nature,
they are likely to be very centrally condensed. Moreover, the most interesting
astrophysical scenarios —those that may be relevant to the birth of quasars and
AGNs — involve the catastrophic collapse of extreme core-halo configurations with
relativistic cores and extensive newtonian halos. These are precisely the clusters for
which one would like to determine the final size of the black hole, but for which our
original integrations, based on the equations of §5, had to terminate well before the
evolution was completed.

Equally relevant, numerical problems encountered in evolving extreme core-halo
spherical clusters often resemble problems that arise when trying to follow the
propagation of gravitational waves during the evolution of non-spherical systems in

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. Schematic space-time diagram of the collapse of a star cluster to a black hole. The vertical
axis is the proper time 7 of particle worldlines, and the horizontal axis is areal (Schwarzschild)
coordinate r,. A singularity forms at the centre in a finite proper time. In a numerical calculation
one chooses a time-slicing ¢ that does not encounter the singularity by slowing down the advance
of proper time near the centre. Shown are three time slices during the collapse. The tick marks on
each slice represent a radial grid based on the isotropic coordinate ». When the spatial metric on
the time slice ¢ has the ‘radial’ form 42dr2+r2dQ?, a spike develops in 4, near the event horizon,
as in the usual static Schwarzschild geometry, even though no physical singularity is encountered.
When the isotropic spatial metric 4% dr®+ 4% r* dQ? is used, no spike appears. However, considerable
radial grid must be expended along the throat near the horizon to accurately determine the metric
there.

general relativity. In the latter situation, one must follow accurately the motion of
matter near a black hole event horizon while simultaneously tracking the
propagation of any radiation out to much larger radii. The complexity of this
problem is also due, in part, to the vast dynamic range that characterizes a space-
time with both a localized region of strong gravitational fields as well as a distant
region with outgoing gravitational waves. Experience gained in solving the centrally
condensed, spherical cluster problem may thus prove useful in the construction of
reliable (24 1)- and (3 + 1)-dimensional numerical codes that can handle strong-field
space-times with gravitational radiation.

Figure 2 illustrates the main effect responsible for our inability to track the late
evolution of highly condensed clusters. Isotropic coordinates, while preventing
‘spikes’ from forming in the radial metric component near horizons (Smarr & York
1978), lead to considerable grid stretching all along the black hole throat. Grid
stretching occurs because the isotropic radial coordinate r is forced to span many
decades along the black hole throat. The metric field also varies rapidly on the
throat. As a consequence, it is necessary to cover the throat with a growing number
of grid points to determine the metric accurately in a numerical calculation.
However, with the computational limitation of only a finite number of radial grid
points available to cover the throat, the growing numerical inaccuracies induced by
grid stretching ultimately force the integrations to terminate.

Furthermore, maximal time slicing, while successful in holding back the advance
of proper time at the centre and thus postponing the formation of singularities,
causes the lapse function a to decay and the spatial conformal factor 4 to increase
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exponentially rapidly at late times at the centre. Thus underflows and overflows in
the metric components may eventually accompany black hole formation, ter-
minating the integrations before the exterior space-time reaches a final stationary
state.

The unsatisfactory situation described above compels us to search for a better
choice of space-time coordinates to solve the problem of centrally condensed
spherical clusters.

Recall the physical meaning of the lapse function «: it gives the lapse of proper
time d7 measured by an observer at rest in the ¢ = const. hypersurfaces, for a given
lapse of coordinate time di: dr = adt. (6.1)

Such an observer is called a normal observer because his wordline is orthogonal to the
t = const. hypersurface.

At late times during gravitational collapse, the lapse goes to zero exponentially
with ¢ near the centre of the configuration (the ‘collapse of the lapse’; see Paper I for
discussion and references). We therefore expect quantities measured by the normal
observer there to freeze, or become constant with ¢ at late times, because there is no
lapse of proper time in the normal observer’s reference frame.

As an example, consider the radial component of the velocity of a particle, ",
where the caret denotes a component measured by the normal observer. We have

v = fub = —u-e;/u-e;. (6.2)

The time basis vector e; is just the 4-velocity of the normal observer, which is the
unit normal n with components given by

n,=(—,0,0,0), w=a"(1,—40,0). (6.3)

The radial basis vector is related to the coordinate radial basis vector by e; = e,/A.
Thus equation (6.2) becomes v = (u,)A) ).

(6.4)

Similarly v = (uy/Ar)/oul. (6.5)
Substituting (6.4) and (6.5) in (5.6) gives

o’ = [1—(v")* = ()’ % (6.6)

Since v* and % must freeze at late times, so must au’, and since u, is a constant of
the motion, we see from (6.4) and (6.5) that the areal radius of a particle », = Ar and
the quantity w,/4 also freeze.

It is straightforward to determine which quantities freeze and which do not as
o — 0 (see Paper 1V). In particular, as functions of r, the source profiles p and 7' freeze,
while ¢, and S,, do not. The quantities #, 4, and r (isotropic radius of a particle) do
not freeze. As a result, equation (5.4) shows that even when a—0, the shift £
continues to drive changes in r. This is the cause of grid stretching.

When a becomes small at late times near the centre of a collapsing configuration,
it is customary in numerical work not to allow it to fall below some small value e,
to avoid underflows. Since some quantities in the numerical evolution do get large,
the question arises of exactly how small a value of ., ;,, is required. Having identified
the variables that freeze, we note that cutting off @ at «,;, < 1 is entirely justified
for equations involving those variables, but could be risky for variables that do not
freeze.
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Figure 3. The lapse function « as a function of areal radius r, on selected maximal time slices for
Oppenheimer—Snyder collapse from R = 10M. —, Results of exact integrations by Petrich et al.
(1985); -, results obtained with the numerical code.

Figure 4. Space-time diagram for Oppenheimer—Snyder collapse in maximal slicing from R = 10M.
The dotted lines are the worldlines of lagrangian matter elements from the exact integrations of
Petrich et al. (1985). Each worldline is labelled by the fixed interior rest-mass fraction. The dots are
points for the corresponding matter elements obtained with the numerical code. ----, Event
horizon. The shaded area is the region of trapped surfaces. Its outer boundary, the apparent
horizon, coincides with the event horizon. Its inner boundary is just inside the surface of the
matter.

To overcome grid stretching and take advantage of a-freezing, we recast the
equations in terms of the freezing variables. In either time slicing, the equations of
motion of a particle become (Paper IV)

s s Kot T/A/( ) (6.7)

dt ou®

3%) = [~ vt (10 i (), (6.8)

Since every term on the right-hand 81des of (6.7) and (6.8) contains an explicit o
or o ,, we see that dr d (

7% @

%t) >0 as a-—0. (6.9)

This is a formal demonstration of the freezing of the particle motion at late times
near the centre of a collapsing configuration in maximal or polar slicing.
For the detailed form of the field equations using freezing variables, see Paper IV.

7. Test-bed calculations

We have subjected our code to a rigorous and systematic battery of test-bed
calculations. These tests not only served to identify bugs and instabilities, but also to

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A
/, A
4 N

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Numerical solution of Einstein’s equations 377

60_F

tIM

50

T T

LI B B B B A

40

Figure 5. Space-time diagram for Oppenheimer—Snyder collapse in polar slicing from R = 10M. -,
Worldlines of lagrangian matter elements from the exact integrations of Petrich et al. (1986). Each
worldline is labelled by the fixed interior rest-mass fractions. The dots are points for the
corresponding matter elements obtained with the numerical code. ----, Event horizon.
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Figure 6. The n = 4 polytropic sequence. The fractional binding energy E,/M, and oscillation
frequency w? in units of 7 = p, — P, are plotted as functions of central redshift z,. Clusters along the
sequence are labelled by their value of the relativity parameter « as in Fackerell (1970). o, Stable
equilibrium ; e, collapse to a black hole.

root out inaccuracies and inefficiencies. In addition, they enabled us to calibrate the
dynamic range of our code. The problem of dynamic range — the ability to handle
problems where the variables span many decades — is particularly important because
the applications most often encountered in Nature present exactly this difficulty.
We have performed 14 independent non-trivial tests. A full discussion of these
tests is given in Papers I, II, and IV. As an example, consider the results for
Oppenheimer—Synder collapse. Here we follow the collapse from rest of a
homogeneous dust ball (initial areal radius R/M = 10) to a black hole. This is the
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Figure 7. The initial rest-mass density profile p, for the relativistic polytrope with n = 4, I' = %, and
central redshift z, = 0.50. The dots are located at points at which the interior rest-mass fraction has
the values shown. This is an extreme core-halo configuration, with a highly relativistic core and an
extensive newtonian halo. At the end of the evolution calculation the black hole contains a fraction
0.05 of the total rest mass, roughly 10 times the initial core mass.

Figure 8. Snapshots of the central regions r,/M < 2 during the collapse of the extreme core-halo
configuration shown in figure 7. The interval between radial grid markers is Ar, = 1 M. Here the
collapse of the innermost regions to a black hole is evident. The circle in the last frame shows the
event horizon at r,/M = 0.1. Note that the cluster does not evolve appreciably after t/M = 40,
but is characterized by the steady orbiting of stars about the central black hole. (a) t/M = 0,
(b) t/M = 2.38, (c) t/M = 40.53, (d) t/M = 439.80.

Figure 9. Space-time diagram in polar slicing for the relativistic polytrope shown in figure 8. —,
Worldlines of imaginary lagrangian matter tracers labelled by their fixed interior rest-mass
fraction. ----, Event horizon. The event horizon asymptotes to r,/M = 0.1, at which point it
encompasses 5% of the total cluster rest mass.

Figure 10. Orbital trajectories of four typical particles near the cluster centre. Each particle N
surrounds a fraction N/7200 of the total cluster rest mass at ¢ = 0. In each frame the spacing
between radial grid marks is Ar, = 1 M. In (a) the particle is initially in an elliptical-like orbit, but
spirals in to the black hole after roughly two orbits. In (b) the particle moves in a nearly elliptical
orbit, exhibiting large perihelion precision about the central black hole. Pericentre for this particle,
r/M = 0.25, is one of the closest of all the particles that do not get captured, and remains
stationary in time. In (c) the particle moves essentially unperturbed in a nearly circular orbit. In
(d) the particle falls nearly radially into the black hole. (¢) N = 333, (b) N = 338, (c) N = 340, (d)
N = 410.
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familiar Friedmann solution, which is known in closed analytic form in gaussian
normal coordinates. For numerical comparisons, one must have available this
solution in our coordinate system. The necessary transformations for both maximal
and polar slicing have been carried out in Petrich et al. (1985, 1986).

In figure 3 we plot the lapse profile on selected maximal time slices during the
collapse. The agreement between the exact and numerical solutions is very good,
even after the black hole forms at t/M = 40.

In figure 4 we plot a space-time diagram for this case. The matter worldlines are
accurately tracked by the numerical code. Moreover, the event horizon correctly
appears at the origin, grows monotonically outwards, and remains stationary at
ro/M =2 once the last particle crosses inside. Note that maximal time slicing
manages to hold back the collapse and prevent the formation of a central singularity.
However, it does not do so before the matter surface collapses well inside the horizon,
to r,/M ~ 1.5, and a region of trapped surfaces forms. This is in contrast to the
situation shown in figure 5 for polar slicing. There the matter surface asymptotes to
ry/M = 2, and no trapped surface forms. This example nicely illustrates the stronger
singularity avoidance property of polar slicing.

8. The stability of relativistic star clusters

As one important application of our code, consider the establishment of binding
energy criteria for the stability of star clusters in general relativity. Imagine a
sequence of equilibrium clusters each constructed from the same distribution
function, but differing in central redshift z,. Plot the fractional binding energy K, /M,
as a function of z, along the sequence. Such a plot is shown in figure 6 for relativistic
polytropes of index n = 4. Unlike the corresponding newtonian curve, which is
monotonic, the relativistic binding energy curve has a turning point at sufficiently
high redshift, z, &~ 0.5. It is known that for a sequence of fluid equilibria, such a
turning point signals the onset of radial instability. No such general theorem has
been proven for collisionless equilibria (see Ipser & Thorne (1968), Ipser (19695,
1980) and references therein for a discussion of previous work). We know from linear
perturbation theory (utilizing trial functions in a variational principle) that at very
high redshift the configurations are unstable. For some distribution functions, the
point of instability appears to coincide with the binding energy maximum, to within
numerical accuracy. However, as is clear from the figure, the onset of instability as
determined by linear perturbation theory (w* < 0) occurs well beyond the turning
point (Fackerell 1970). We do not know whether improved trial functions would
show that instability actually sets in earlier along the sequence.

To find out what actually happens, we took models along the equilibrium sequence
as initial data for our numerical code. Any numerical inaccuracies in the initial data
or the evolution, however small, will induce collapse in an unstable configuration. As
is evident from the figure, we find that all configurations beyond the first turning
point are dynamically unstable. We thus conclude from this and other examples that
the turning point on the binding energy curve does in fact signify the onset of
dynamical instability. We therefore have ‘discovered’ a theorem awaiting a more
formal proof.

Incidentally, the first unstable model shown in figure 6, with z, ~ 0.5, is of
particular interest. It is a prototype of an extreme core-halo configuration, containing
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only 0.5% of its rest mass in a tiny relativistic core, and the remainder of the mass
in an extensive newtonian halo, extending out to R/M =~ 5000. The ratio of the mean
to central density is (p)/p, = 4.0 x 107'3. When this model collapses, a mass much
larger than that of the core, approximately 5% of the rest mass, forms a central
black hole. At the end of the collapse, the cluster settles in to a new stationary state
consisting of a massive newtonian halo in orbit about a central black hole. This
numerical example provides a viable scenario for the formation of a supermassive
black hole in a galactic nucleus.

To handle this case we had to use the freezing version of our code, which was
specially designed for configurations with such large dynamic range. Maximal slicing
was not adequate to hold back the collapse. Before the cluster could settle into a final
stationary state, the central lapse collapsed below a, & 1077 and the central radial
metric coefficient increased above A, ~ 10*. While a« could be cut off below some
minimum value «,;, < 1 to avoid computer underflows, there is no way to cut off the
growth of 4 and still maintain accuracy. Polar slicing in the freezing version proved
adequate for this case, since A, grows much more slowly with time in this gauge.

Several features of the collapse are highlighted in figures 7-10. The initial density
profile is shown in figure 7. Snapshots of the central regions of the cluster inside
ro/M = 2 at selected times during the collapse are shown in figure 8. The cluster
profile does not evolve significantly in the outer newtonian halo where most of the
mass resides. However, the black hole is effective in ‘sweeping clean’ the innermost
regions in and around the core. The cluster does not evolve much after t/M = 40
except for the steady orbiting of ambient stars about the central hole. The space-time
diagram for the collapse is shown in figure 9.

The orbital trajectories of four typical particles near the cluster centre are plotted
in figure 10. Interior to particle NV at ¢/M = O resides a fraction N/7200 of the total
cluster rest mass. Particle 333, which is initially in an elliptical-like orbit near
r,/M = 1, experiences inward spiral motion leading to capture by the black hole after
two orbital periods. Particle 410 falls nearly radially from about 7M into the black
hole. Particle 340 moves nearly unperturbed in a circular orbit at 1.M. Particle 338
moves in a nearly elliptical orbit extending out to 1.5M and exhibiting large perihelion
precession about the central hole. Pericentre for this orbit appears to be one of the
closest of all the ambient particles that do not get captured. It is located at r,/M =
0.25 or ry/My ~ 5. This is consistent with the fact that particles which orbit a
stationary Schwarzschild black hole inside r,/M = 4 are inevitably captured (see, for
example, Misner ef al. 1973). It is also satisfying that the pericentre position of this
marginally stable orbit remains stationary with time, further confirming that by the
time our integrations terminate, the cluster has achieved a new dynamic equilibrium
about a stationary central black hole.

It has generally been believed that all relativistic clusters with central redshift
2, 2 0.5 should be dynamically unstable. The reason for this belief was that all the
equilibrium sequences whose stability had been probed by linear perturbation theory
satisfied this criterion (Ipser 1969a, b; Fackerell 1970). This belief has persisted in
spite of speculations that some self-similar clusters with infinite central densities and
redshifts constructed by Bisnovatyi-Kogan & Zel’dovich (1969) might be stable (see
Bisnovatyi-Kogan & Thorne 1970). The unrealistic nature of these clusters made
them appear of little interest. Moreover, all techniques for testing stability that were
applied to them yielded inconclusive results.

Recently, finite, asymptotically flat clusters with arbitrarily large redshift have

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
/[

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Numerical solution of Hinstein’s equations 381

been constructed by Kochanek et al. (1987). The fractional binding energy along a
sequence of these clusters increases monotonically with central redshift. Therefore,
according to the theorem of Ipser (1980), all clusters along the sequence should
remain dynamically stable, even when their central redshifts become arbitrarily
large. This behaviour has been confirmed by numerical simulations (Rasio et al.
1989a). These simulations used a novel technique for handling the matter, which is
described in the next section. The principal conclusion of these studies is that binding
energy, and not central redshift, provides the essential criterion for stability.

9. Direct solution of the Vlasov equation

The mean-field particle-simulation scheme discussed above provides particle
positions and velocities, but does not provide the phase space distribution function
[ Determining f requires the direct solution of the Vlasov equation in phase space.
Very little effort has been devoted to this problem, even in newtonian gravity. An
advantage of working with f is that the solution contains complete information on
the matter distribution, and not merely the lowest moments.

We have recently developed a method to solve the relativistic Vlasov equation in
spherical symmetry by exploiting Liouville’s theorem (see Rasio et al. (1989 b) for full
discussion and references). The key idea for determining f at time ¢, knowing its
value at ¢, is to implement the equation

Sy, 0, 8) = fl2y, 01, y),

where (z,,v,) is the position in phase space at time ¢, of a test particle that will reach
the position (z,, v,) at time ¢,. The gravitational field equations are of course the same
as described above. The method accurately tracks the increasingly complicated
fine-grained structure developed by the distribution function due to phase mixing.
For moderate accuracies, the mean-field particle-simulation scheme is adequate.
However, for high accuracy or for a detailed description of the phase space
distribution, the direct method is superior.

10. The origin of quasars and AGNs

There is a wealth of evidence, albeit circumstantial, that supermassive black holes
are the engines that power quasars and AGNs (see reviews by Rees (1984) and
Begelman et al. (1984) and references therein for compelling arguments). Assuming
that the black hole model is correct, it is straightforward to estimate the mass of the
black hole. Such estimates typically give a range 10° <M /M, < 10°. Even if the
black hole hypothesis is correct, a key unanswered question remains: how and under
what circumstances did such a supermassive black hole form ?

Applying the result of our numerical simulations, we proposed in Paper III that the
collapse of dense star clusters to supermassive black holes may provide the answer.
Our scenario, which is similar to the original proposal of Zel’dovich & Podurets
(1965), begins with a dense, but otherwise newtonian, cluster of compact stars —
neutron stars or stellar mass black holes — residing at the centre of a galactic nucleus.
Because of Coulomb scattering between the stars, the core of such a newtonian
cluster inevitably undergoes a secular collapse on a relaxation timescale to a high
density, high redshift state. Such secular newtonian collapse in a self-gravitating,
large N-body stellar system is known as the gravothermal catastrophe, or simply core
collapse. If core collapse should proceed all the way to a relativistic state, then the
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resulting extreme core-halo configuration will be unstable to catastrophic collapse to
a black hole. The collapse will take place rapidly, on a dynamical timescale. Our
calculations show that those clusters capable of reaching such relativistic central
redshifts in less than a Hubble time could possibly form supermassive black holes of
precisely the right size to explain quasars and acexs, 10 < M/M, < 10°.

Gravitational radiation emitted in binary encounters can play an important role
in this evolution (Quinlan & Shapiro 1987). A detailed treatment involving
integration of the newtonian Fokker—Planck equation suggests that the original
scenario, while leading to supermassive black holes, may be somewhat oversimplified
(Quinlan & Shapiro 1989, 1990).

Ultimately, planned high-resolution Hubble Space Telescope observations of
galactic nuclei may determine whether stellar conditions there are indeed suitable for
triggering the black hole formation scenario we have proposed.

11. Non-spherical systems

Very little is known about non-spherical collisionless systems in relativity even for
static equilibria. Dynamically, once we relax the restriction to spherical symmetry,
two new facets can be explored: rotation and gravitational radiation. Our
computations are the first to deal with these features numerically in the context of
collisionless matter. A highlight of these investigations of space-times with
collisionless matter is the ability to address fundamental issues in relativity like
cosmic censorship and naked singularities.

(a) Cosmic censorship, hoop conjecture, and naked singularities

It is well known that general relativity admits solutions with singularities, and
that such solutions can be produced by the gravitational collapse of non-singular,
asymptotically flat initial data. The cosmic censorship hypothesis (Penrose 1969)
states that such singularities will always be clothed by event horizons and hence can
never be visible from the outside (no naked singularities). If cosmic censorship holds,
then there is no problem with predicting the future evolution outside the event
horizon. If it does not hold, then the formation of a naked singularity during collapse
would be a disaster for general relativity theory. In this situation, one cannot say
anything precise about the future evolution of any region of space containing the
singularity since new information could emerge from it in a completely arbitrary
way. '

Are there guarantees that an event horizon will always hide a naked singularity ?
No definitive theorems exist. Proving the validity of cosmic censorship is perhaps the
most outstanding problem in the theory of general relativity. Until recently, possible
counter-examples (see, for example, Goldwirth et al. 1989) have all been restricted to
spherical symmetry and typically involve shell crossing, shell focusing, or self-
similarity. Are these singularities an accident of spherical symmetry ?

Very little is known about non-spherical collapse in general relativity. In the
absence of concrete theorems, Thorne (1972) has proposed the hoop conjecture:
Black holes with horizons form when and only when a mass M gets compacted into
a region whose circumference in every direction is ¢ < 4mM. If the hoop conjecture
is correct, aspherical collapse with one or two dimensions appreciably larger than the
others might then lead to naked singularities.

For example, consider the Lin—-Mestel-Shu instability (Lin et al. 1965) for the
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collapse of a non-rotating, homogeneous spheroid of collisionless matter in newtonian
gravity. Such a configuration remains homogeneous and spheroidal during collapse.
If the spheroid is slightly oblate, the configuration collapses to a pancake, while if the
spheroid is slightly prolate, it collapses to a spindle. While in both cases the density
becomes infinite, the formation of a spindle during prolate collapse is particularly
worrisome. The gravitational potential, gravitational force, tidal force, kinetic and
potential energies all blow up. This behaviour is far more serious than mere shell-
crossing, where the density alone becomes momentarily infinite. For collisionless
matter, prolate evolution is forced to terminate at the singular spindle state. For
oblate evolution the matter simply passes through the pancake state, but then
becomes prolate and also evolves to a spindle singularity.

Does this newtonian example have any relevance to general relativity ¢ We already
know that infinite cylinders do collapse to singularities in general relativity, and, in
accord with the hoop conjecture, are not hidden by event horizons (Thorne 1972;
Misner et al. 1973). But what about finite configurations in asymptotically flat space-
times ?

Previously, we constructed an analytic sequence of momentarily static, prolate
and oblate collisionless spheroids in full general relativity (Nakamura et al. 1988). We
found that in the limit of large eccentricity the solutions all become singular. In
agreement with the hoop conjecture, extended spheroids have no apparent horizons.
Can these singularities arise from the collapse of non-singular initial data ? To answer
this, we have performed fully relativistic dynamical calculations of the collapse of
these spheroids, starting from non-singular initial configurations (Shapiro &
Teukolsky 19914, b).

We find that the collapse of a prolate spheroid with sufficiently large semi-major
axis leads to a spindle singularity without an apparent horizon. Our numerical
computations suggest that the hoop conjecture is valid, but that cosmic censorship
does not hold because a naked singularity may form in non-spherical relativistic
collapse.

(b) Numerical code

Our numerical code solves Einstein’s equations for the evolution of non-rotating,
collisionless matter in axisymmetric space-times. It is an extension of the treatment
described above for spherical space-times and also of a newtonian method for
axisymmetric configurations (Shapiro & Teukolsky 1987). It is designed to be able to
handle cases in which the collisionless matter collapses to a singularity : specifically,
oblate collapse to flat pancakes and prolate collapse to thin spindles.

We use maximal time slicing and isotropic spatial coordinates in axisymmetry.
The metric is

ds? = —a?di2+A%(dr+ 7 dt)? + A%%(d0 + B° di)? + B*?sin® 6 dg>. (11.1)

We list the key equations in the Appendix.

We have carried out a large battery of test-bed calculations to ensure the
reliability of the code. These tests included the propagation of linearized analytic
quadrupole waves with and without matter sources and nonlinear Brill waves in
vacuum space-times; maintaining equilibria and identifying the onset of instability
for spherical equilibrium clusters (see above); reproducing Oppenheimer—Snyder
collapse of homogeneous dust spheres and newtonian collapse of homogeneous
spheroids (Lin et al. 1965 ; Shapiro & Teukolsky 1987). We constructed a number of
geometric probes to diagnose the evolving space-time. We tracked the Brill mass and

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A
/, A
4 N

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

384 S. L. Shapiro and S. A. Teukolsky
Figure 11 Figure 12
2 .
E (a) (@)
8
5 1 ® 4
0 : Viilg i v by gy ]
1 ®)
..... (®)
.E \\ ~:>§(
3]
B T AR
0 1 2 4 8
equator equator

Figure 11. Snapshots of the particle positions at (a) initial (¢/M = 0) and (b) late (¢/M = 7.7) times
for prolate collapse. The positions (in units of M) are projected onto a meridional plane. Initially
the semi-major axis of the spheroid is 24 and the eccentricity is 0.9. The collapse proceeds non-
homologously and terminates with the formation of a spindle singularity on the axis. However, an
apparent horizon (dashed line) forms to cover the singularity. At ¢/M = 7.7 its area is &7 /16nM? =
0.98, close to the asymptotic theoretical limit of 1. Its polar and equatorial circumferences at that
time are @an./4nM = 1.03 and G247 /4nM = 0.91. At later times these circumferences become equal
and approach the expected theoretical value 1. The minimum exterior polar circumference is shown
by a dotted line when it does not coincide with the matter surface. Likewise, the minimum
equatorial circumference, which is a circle, is indicated by a solid dot. Here € /4nM = 0.59 and
grn /4nM = 0.99. The formation of a black hole is thus consistent with the hoop conjecture.

pole
Figure 12. Snapshots of the particle positions at (@) the initial (¢/M = 0) and (b) final (¢/M = 23)
times for prolate collapse with the same initial eccentricity as figure 11 but with initial semi-major
axis equal to 10M. The collapse proceeds as in figure 11, and terminates with the formation of a

spindle singularity on the axis at ¢/M = 23. The minimum polar circumference is €2 /4nM = 2.8.

There is no apparent horizon, in agreement with the hoop conjecture. This is a good candidate for
a naked singularity, which would violate the cosmic censorship hypothesis.

outgoing radiation energy flux to monitor mass-energy conservation. To confirm the
formation of a black hole, we probed the space-time for the appearance of an
apparent horizon and computed its area and shape when it was present. T'o measure
the growth of a singularity, we computed the Riemann invariant I = R, , R at
every spatial grid point. To test the hoop conjecture, we computed the minimum
equatorial and polar circumferences outside the matter.

Typical simulations were performed with a spatial grid of 100 radial and 32
angular zones, and with 6000 test particles. A key feature enabling us to snuggle close
to singularities was that the angular grid could fan and the radial grid could contract
to follow the matter. o )

(c) Collapse of collisionless spheroids

We followed the collapse of non-rotating prolate and oblate spheroids of various
initial sizes and eccentricities. The matter particles are instantaneously at rest at
t =0 and the configurations give exact solutions of the relativistic initial-value
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Figure 14
Figure 13
40
I 20f
—_ 1 T |
0 10

tIM

Figure 13. Growth of the Riemann invariant / (in units of M%) against time for the collapse shown
in figure 12. The simulation was repeated with various angular grid resolutions. Each curve is
labelled by the number of angular zones used. We use dots to show where the singularity has caused
the code to become inaccurate.

Figure 14. Profile of I in a meridional plane for the collapse shown in figure 12. For the case of 32
angular zones shown here, the peak value of I is 24/M* and occurs on the axis just outside the
matter (¢/M = 23).

equations (Nakamura et al. 1988). In the newtonian limit, these spheroids reduce to
homogeneous spheroids. When they are large (size > M in all directions) we confirm
that their evolution is newtonian (Lin ef al. 1965; Shapiro & Teukolsky 1987).

Figure 11 shows the fate of a typical prolate configuration that collapses from a
highly compact and relativistic initial state to a black hole. Note that in isotropic
coordinates a Schwarzschild black hole on the initial time slice would have radius
r = 0.5M, corresponding to a Schwarzschild radius ry = 2M. Figure 12 depicts the
outcome of prolate collapse with the same initial eccentricity but from a larger semi-
major axis. Here the configuration collapses to a spindle singularity at the pole
without the appearance of any apparent horizon. (We searched for both a single
global horizon centred on the origin as well as a small disjoint horizon around the
singularity in each hemisphere.) The spindle consists of a concentration of matter
near the axis at » & 5M. Figure 13 shows the growth of the Riemann invariant I at
r = 6.1M on the axis, just outside the matter. Before the formation of the singularity,
the typical size of I at any exterior radius » on the axis is about M?/r® < 1. With the
formation of the spindle singularity, the value of [ rises without bound in the region
near the pole. The maximum value of I determined by our code is limited only by the
resolution of the angular grid: the better we resolve the spindle the larger the value
of I we can attain before the singularity causes the code (and space-time!) to break
down. Unlike shell-crossing singularities, where I blows up in the matter interior
whenever the matter density is momentarily infinite, the singularity also extends
outside the matter beyond the pole at » = 5.8} (figure 14). In fact, the peak value
of I occurs in the vacuum at » = 6.14. Here the exterior tidal gravitational field is
blowing up, which is not the case for shell crossing. The absence of an apparent
horizon suggests that the spindle is a naked singularity.

When our simulation terminates, I along the axis falls to half its peak value at
r &~ 4.5M inside the matter and r ~ 6.7M outside the matter. The singularity is not a
point. Rather it is an extended region which includes the matter spindle, but grows
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most rapidly in the vacuum exterior above the pole. A t = const. slice has a spatial
metric ds? = A2 dr® + A%2 d0° + B sin® 0 dgs2.

In flat space 4 = B = 1. At the termination of the simulation these quantities have
a modest maximum value 4 &~ B ~ 1.7, which occurs at the origin. They decrease
monotonically outwards, reaching unity at large distances. However, it is their
second derivatives that contribute to / and these blow up. While 4 and B steadily
grow with time, I diverges much more rapidly. The behaviour is similar to the
logarithmic divergence of the metric in the analytic prolate sequence of Nakamura
et al. (1988). We emphasize that the above characterization of the singularity and the
behaviour of the metric is dependent on the time slicing and may be different for
other choices of time coordinate. In principle the spindle singularity might first occur
at the centre rather than the pole with a different time slicing.

The absence of an apparent horizon does not necessarily imply the absence of a
global event horizon, although the converse is true. Recently Wald & Iyer (1991)
have emphasized this point by showing that even Schwarzschild space-time can be
sliced with non-spherical slices that approach arbitrarily close to the singularity
without any trapped surfaces. Because such singularities cause our numerical
integrations to terminate, we cannot map out a space-time arbitrarily far into the
future, which would be necessary to completely rule out the formation of an event
horizon. However, we do not think this is at all likely : for collapse from an initially
compact state (figure 11), outward null geodesics turn around near the singularity.
For collapse from large radius, by contrast (figure 12), outward null geodesics are still
propagating freely away from the vicinity of the singularity up to the time our
integrations terminate. It is an interesting question for future research whether any
time slicing can be found which will be more effective in snuggling up to the
singularity without actually hitting it. Such a slicing would enable one to confirm
that all outward null geodesics propagate to large distances.

(Maximal slicing apparently does not hold back the formation of prolate spindle
singularities. For prolate spheroids the newtonian potential diverges only log-
arithmically as the eccentricity -1, which may explain why o does not plummet
precipitously near a spindle.)

Further evidence for the nakedness of the singularity is the similarity of the
spindle singularity to the infinite cylinder naked singularity. In both cases the proper
length of a given segment of matter along the axis grows slowly, while its proper
circumference and surface area shrink to zero much more rapidly. Also, the
singularity is an extended region along the axis and not just a point.

We have also followed the collapse of an initially oblate configuration with the
same initial eccentricity and semi-major axis as figure 12. Following pancaking, it
overshoots, becomes prolate and forms a black hole. At the time our integrations
terminate, we find that €t = Fmi* = 0.85 (4nM).

All of the above results are consistent with the hoop conjecture. When black holes
form, the minimum polar and equatorial circumferences satisfy %™ < 4nM.
Conversely, when naked singularities form the minimum polar circumference is much
bigger than this value. In all cases where an apparent horizon forms, its area satisfies
to within numerical accuracy .« < 16nM?, as required theoretically. In every case we
find that gravitational radiation carries away a negligible fraction (< 1%) of the
total mass-energy by the time a black hole or naked singularity forms.
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(d) Conclusions

We have presented numerical evidence that the hoop conjecture is a valid criterion
for the formation of black holes during non-spherical gravitational collapse. We have
also found numerical candidates for the formation of naked singularities from non-
singular initial configurations. These examples are in contrast with any case of
singularities which may arise during spherical collapse. There the exterior space-time
is always the Schwarzschild metric and the Riemann invariant is always exactly
48M? /7%, which is finite outside the matter. In spherical collapse the singularities can
thus only occur inside the matter. Here the singularities extend above the pole into
the vacuum exterior. These examples suggest that the unqualified cosmic censorship
hypothesis cannot be valid.

While the matter treated here has kinetic pressure, it is collisionless, not fluid. We
do not regard the collisional properties of the matter as crucial. First, the formation
of naked singularities should not depend on the particular details of the fundamental
interactions affecting matter at high densities. The gravitational field equations
alone should be sufficient to rule out naked singularities, at least in the vacuum
exterior, for true cosmic censorship. Second, collisional effects may even accelerate
the formation of singularities via relativistic ‘pressure regeneration’ (Misner et al.
1973). There is at least one tentative numerical example of prolate fluid collapse
(adiabatic index I'—2) that appears to be evolving to a singular state without the
formation of an apparent horizon (Nakamura & Sato 1982; Nakamura et al. 1987).

It is not impossible that naked singularities qualitatively similar to the ones here
may even arise in vacuum space-times. Since the sequence of momentarily static
spheroids (Nakamura et al. 1988) proved to be a predictor of the singularities found
in the dynamical calculations, we have been motivated to seek similar sequences of
pure vacuum initial data. We have constructed two sequences characterized by long
prolate concentrations of mass-energy : linear strings of black holes, and Brill waves
with characteristic widths much less than their lengths. We find once again that the
surrounding gravitational tidal field diverges for limiting members of these
sequences, but that no apparent horizons occur when the configurations are
sufficiently long. It would be interesting to use these solutions as initial data in
dynamical evolutions.

The collisionless matter simulations described so far have no angular momentum.
The presence of angular momentum could prevent an infinitesimally thin spindle
singularity from forming on the axis. Recently, Apostolatos & Thorne (1992) have
shown that, as in newtonian theory, an infinitesimal amount of rotation is sufficient
to prevent the formation of a singularity in the relativistic collapse of an infinite dust
cylinder. This still leaves open the possibility that collapsing configurations of finite
size can still collapse to singularities in the presence of rotation. Recall that a small
amount of angular momentum does not prevent the formation of a singularity when
a Kerr black hole forms.

To explore this question, we have recently used our code to study the collapse of
rotating collisionless spheroids (Shapiro & Teukolsky 1992). The spheroids are
initially prolate and consist of equal numbers of co- and counter-rotating particles,
as in the infinite case treated by Apostolatos & Thorne (1992). Although individual
particles are rotating, the spheroid has no net angular momentum. This restriction
greatly simplifies the space-time: the metric still has the same form as equation
(11.1). We find that rotation significantly modifies the evolution when it is
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sufficiently large. Imploding configurations with appreciable rotation ultimately
collapse to black holes. However, for small enough angular momentum, our
simulations cannot at present distinguish rotating from non-rotating collapse:
spindle singularities appear to arise without apparent horizons. Hence it is possible
that even spheroids with some angular momentum may form naked singularities.

Appendix A

Here we list the key equations for the evolution of an axisymmetric configuration
in the aApm 341 decomposition of general relativity. We specialize to the case
of no net angular momentum (Evans 1984). We adopt the space-time coordinates
(¢,7,0,¢). Because of axisymmetry all quantities are functions only of (¢, r, 8).

The metric is given by equation (11.1). In addition to the metric coefficients a, f’,
f%, A and B, the Apm formalism introduces the components of the extrinsic curvature
tensor, K*;. It is convenient to introduce the related quantities

K', = ABK',. (A1)
The evolution equations, which we use to determine the ‘radiation variables’ 4y =
In (4/B) and K7, are:

0,1 = (a/A2B) A+ B, n+ B0, +0, 5 — f cot 6, (A 2)
Kry = (1/r*)0, ("*B'K" ;) + (1/sin ) 3, (sin 0 g K",

_ o4 {ao[?iﬂga,(b’n] Lo (Ar)ag(Bsinﬂ)}

r8in 0 A AT
T (@, 80 —0, f)+ (2A — 3K¢ )0y ff—ABO,(A710, )
B/Ar (A7) 0ga— (o /A%) S,y, (A 3)
where A= K", +2K?,

and where matter source terms like §,, will be defined below.
The momentum constraint equations, which we use to solve for K", and K?;, are

1 P T sin®0 5\ _ 1 iy
sing o 0K r>+sng@o( 7 K ¢) = =S+ 50, (°K"), (A4)
720, (K", +K¢¢ 0,1 =28,—(1/r*sin 6) 9, (sin 0K’¢), (A 5)

where 7' = A/B. The hamiltonian constraint equation determines y = Bt:
7720, (r*0,¥)+ (1/r*sin 0) 0, (sin 0 0, ) = —3f[r™ 10, (r0,n) +7 202y
+(1/1%y®) {/\2—3/\K¢¢+3(K¢ +(K"y/r)?} ] —p*/4p. (A 6)

To impose the maximal slicing condition on the time coordinate, we solve the
‘lapse’ equation for a

r720,[r? 0, (o)) ]+ (1/728in 6) 0, [sin O 0 (o)) ] = Yof[ — 7710, (r 0, ) — 7202y
+(7/A%B?) {/\2—3/\K¢ +3(K¢ +(K"y/r) 5+ B (p*+28)]. (A7)
Imposing isotropic spatial coordinates leads to the ‘shift’ equations for 7 and £’:
r, (f/r)— 8,8 = (a/A*B) (20— 3K?,), (A 8)
70, B+ 0,(f/r) = (20/A2 Br) K", (A 9)
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The geodesic equations of motion for the collisionless particles are:

dr/dt = au,/4A4*—f", (A 10)
db/dt = au,/4A%*— 2, (A 11)
deg/dt = (ee/B*r*sin®0) uy/4, (A 12)

du,/dt = —40,0c+u, 0, f7+u,0, p’

a 1 1 1\ w,? ]
——[a( 2) 2+a( A2)u”2+a’(1—92—75)§1_1%5_’ (A 13)

du,/dt = — 40,00+, 0y +u,0, 3

_“ [a (12) 2+ae( Z)ugz—ka(,(m)uf_, (A 14)
duy/dt = 0, (A 15)
where the normalization condition w*u, = —1 gives
2 w2 1
ih=a [1+ + 2A2 Bzr2:in20]' (A 16)

The particles are binned to determine the source terms for the field equations:
mil;
i

* =
p ?(«2 sin 0 Ar AOAg),” (A 17)
B ?(rz sin 0 Ar A6 Ag);’ (A 18)
_ ma)
B ?(rz sin 0 Ar A6 Ag);’ (A 19)
_ mul ul,
N ?dj(rz sin @ Ar A0 Ag),’ (A 20)
m
= p*—
S =P in 0 Ar AT AG), (A 21)
The Brill mass of the space-time is given at any instant by
1
e —Jd3 [ (VIny)*+ K, KO <8A232) o ] (A 22)

where V is the flat space gradient operator.
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